有穷自动机:修订间差异

来自吾萌百科
无编辑摘要
第69行: 第69行:
\mathcal{L(M)}=\{w\in \Sigma^*|\hat{\delta}(q_0,w)\in F\}
\mathcal{L(M)}=\{w\in \Sigma^*|\hat{\delta}(q_0,w)\in F\}
</math>
</math>
== 非确定### 定义
非确定性有穷自动机是一个5元组$(Q,\Sigma,\delta,q_0,F)$,其中
1. Q是一个有穷集合,称为状态集
2. $\Sigma$是一个有穷集合,称为字母表
3. $\delta:Q×\Sigma \rightarrow \mathcal P(Q)$是状态转移函数 $(\mathcal P(Q)=\{S|S\subseteq Q\})$
4. $q_0\in Q$是起始状态
5. $F\subseteq Q$是接受状态集
一台非确定性有穷自动机有如上五个部分组成,介绍如下:
1. 它有一个状态集,表示它有的全部状态
2. 它有一个输入字母表,指明所有允许的输入符号
3. 它有一个根据一个输入字符从一个状态到零个或多个状态的规则
4. 它有一个起始状态,表示处理所起始的状态
5. 它有一个接受状态集,表示处理表达为接受的状态性有穷自动机 ==
### 定义
非确定性有穷自动机是一个5元组$(Q,\Sigma,\delta,q_0,F)$,其中
1. Q是一个有穷集合,称为状态集
2. $\Sigma$是一个有穷集合,称为字母表
3. $\delta:Q×\Sigma \rightarrow \mathcal P(Q)$是状态转移函数 $(\mathcal P(Q)=\{S|S\subseteq Q\})$
4. $q_0\in Q$是起始状态
5. $F\subseteq Q$是接受状态集
一台非确定性有穷自动机有如上五个部分组成,介绍如下:
1. 它有一个状态集,表示它有的全部状态
2. 它有一个输入字母表,指明所有允许的输入符号
3. 它有一个根据一个输入字符从一个状态到零个或多个状态的规则
4. 它有一个起始状态,表示处理所起始的状态
5. 它有一个接受状态集,表示处理表达为接受的状态

2022年2月19日 (六) 17:14的版本

确定性有穷自动机

定义

确定性有穷自动机(Deterministic Finite Automaton, DFA)是一个5元组[math]\displaystyle{ (Q,\Sigma,\delta,q_0,F) }[/math],其中

  1. Q是一个有穷集合,称为状态集
  2. [math]\displaystyle{ \Sigma }[/math]是一个有穷集合,称为字母表
  3. [math]\displaystyle{ \delta:Q×\Sigma \rightarrow Q }[/math]是状态转移函数
  4. [math]\displaystyle{ q_0\in Q }[/math]是起始状态
  5. [math]\displaystyle{ F\subseteq Q }[/math]是接受状态集

一台确定性有穷自动机有如上五个部分组成,介绍如下:

  1. 它有一个状态集,表示它有的全部状态
  2. 它有一个输入字母表,指明所有允许的输入符号
  3. 它有一个根据一个输入字符从一个状态到另一个状态的规则
  4. 它有一个起始状态,表示处理所起始的状态
  5. 它有一个接受状态集,表示处理表达为接受的状态

用处

主要对于输入的字符串判定是否该确定性有穷自动机所识别的语言,对此表示接受及不接受。

而如上的确定性有穷自动机是识别以0结尾的串,对于以0结尾的串[math]\displaystyle{ x \in \Sigma^* }[/math],表示接受,反之不接受。

确定性有穷自动机可以用来定义语言也可用于识别语言。

运算

假如现在有个确定性有穷自动机[math]\displaystyle{ \mathcal M_1=(Q,\Sigma,\delta,q_0,F) }[/math]

[math]\displaystyle{ \begin{align} Q=\{q_0,q_1\}\\ \Sigma=\{0,1\}\\ \delta=\begin{Bmatrix} \delta(q_0,0)=q_1\\ \delta(q_0,1)=q_0\\ \delta(q_1,0)=q_1\\ \delta(q_1,1)=q_0 \end{Bmatrix}\\ F=\{q_1\} \end{align} }[/math]

假如对于上面的确定性有穷自动机[math]\displaystyle{ \mathcal M_1 }[/math],输入字符串[math]\displaystyle{ 010 }[/math],此时从初始状态[math]\displaystyle{ q_0 }[/math]开始,读入第一个字符[math]\displaystyle{ 0 }[/math],因为[math]\displaystyle{ \delta(q_0,0)=q_1 }[/math],所以转移状态至[math]\displaystyle{ q_1 }[/math],继续读入下一个字符[math]\displaystyle{ 1 }[/math],因为[math]\displaystyle{ \delta(q_1,1)=q_0 }[/math],所以转移状态至$q_0$,继续读入下一个字符[math]\displaystyle{ 0 }[/math],因为[math]\displaystyle{ \delta(q_0,0)=1 }[/math]所以转移状态至[math]\displaystyle{ q_1 }[/math],运算结束。因为最后停在状态[math]\displaystyle{ q_1 }[/math],因为[math]\displaystyle{ q_1 \in F }[/math],所以确定性有穷自动机[math]\displaystyle{ \mathcal M_1 }[/math]接受字符串[math]\displaystyle{ 010 }[/math]

扩展转移函数

扩展[math]\displaystyle{ \delta }[/math]到字符串,定义扩展转移函数[math]\displaystyle{ \hat{\delta}:Q×\Sigma^* \rightarrow Q }[/math]

[math]\displaystyle{ \hat{\delta}(q,w)=\begin{cases} q &w=\varepsilon \\ \delta(\hat{\delta}(q,x),a)&w=xa \end{cases} }[/math]

其中[math]\displaystyle{ q \in Q$,$a \in \Sigma }[/math][math]\displaystyle{ w,x \in \Sigma^* }[/math]

定理一

[math]\displaystyle{ \hat{\delta}(q,xy)=\hat{\delta}(\hat{\delta}(q,x),y) }[/math]

DFA的语言

[math]\displaystyle{ M=(Q,\Sigma,\delta,q_0,F) }[/math]是一个确定性有穷自动机,则M接受的语言为

[math]\displaystyle{ \mathcal{L(M)}=\{w\in \Sigma^*|\hat{\delta}(q_0,w)\in F\} }[/math]

== 非确定### 定义

非确定性有穷自动机是一个5元组$(Q,\Sigma,\delta,q_0,F)$,其中

1. Q是一个有穷集合,称为状态集 2. $\Sigma$是一个有穷集合,称为字母表 3. $\delta:Q×\Sigma \rightarrow \mathcal P(Q)$是状态转移函数 $(\mathcal P(Q)=\{S|S\subseteq Q\})$ 4. $q_0\in Q$是起始状态 5. $F\subseteq Q$是接受状态集

一台非确定性有穷自动机有如上五个部分组成,介绍如下:

1. 它有一个状态集,表示它有的全部状态 2. 它有一个输入字母表,指明所有允许的输入符号

3. 它有一个根据一个输入字符从一个状态到零个或多个状态的规则

4. 它有一个起始状态,表示处理所起始的状态

5. 它有一个接受状态集,表示处理表达为接受的状态性有穷自动机 ==

      1. 定义

非确定性有穷自动机是一个5元组$(Q,\Sigma,\delta,q_0,F)$,其中

1. Q是一个有穷集合,称为状态集 2. $\Sigma$是一个有穷集合,称为字母表 3. $\delta:Q×\Sigma \rightarrow \mathcal P(Q)$是状态转移函数 $(\mathcal P(Q)=\{S|S\subseteq Q\})$ 4. $q_0\in Q$是起始状态 5. $F\subseteq Q$是接受状态集

一台非确定性有穷自动机有如上五个部分组成,介绍如下:

1. 它有一个状态集,表示它有的全部状态 2. 它有一个输入字母表,指明所有允许的输入符号

3. 它有一个根据一个输入字符从一个状态到零个或多个状态的规则

4. 它有一个起始状态,表示处理所起始的状态

5. 它有一个接受状态集,表示处理表达为接受的状态