算数基本定理(Fundamental Theorem of Arithmetic)即:任何一个大于1的正整数都能被唯一分解为有限个素数的乘积,可写作[math]\displaystyle{ N=\prod_{i=1}^{n}{p_i^c_i}={p_1}^{c_1}{p_2}^{c_2}\cdots{p_n}^{c_n} }[/math]
其中 [math]\displaystyle{ c_i }[/math] 都是正整数,[math]\displaystyle{ p_i }[/math] 都是素数,且满足 [math]\displaystyle{ p_1\lt p_2\lt \cdots \lt p_n }[/math]